Abstract:
Dimensional accuracy is one of the most important quality indicators of large shaft grinding, which directly affects the shaft service performance. Overcut/undercut caused by grinding wheel width and wear are the main factors affecting dimensional accuracy of large shaft grinding, which can be described by establishing physical models, and the physical models would be further used for compensation. However, the residual error always exists due to modeling uncertainty, and the residual error has nonlinear relation with compensation value, which is hard to completely eliminate. In order to solve the problem, this paper proposes a dimensional accuracy compensation method of large shaft grinding via residual error iteration with fuzzy approach. Two physical models are firstly established by considering the grinding wheel width and wear, respectively. The residual error after using these two models is further dealt with iteration, and the fuzzy approach is applied to dynamically calculate the compensation coefficients to improve dimensional accuracy while ensuring con-vergence. The experimental results show that the mean dimensional error is reduced 83% by using the pro-posed method, which is much better than other compensation methods.
Abstract:
Currently, manual detection of wall welds and surface microcracks on ships and oil tanks is not only inefficient but also potentially hazardous. This study proposes a 4SRRR legged wall-climbing robot with redundant actuation, designed to accommodate the characteristics of permeable materials, to address this issue. First, the robot's gait is examined, followed by a thorough examination of its stability on both vertical and horizontal surfaces. For vertical surfaces, a statics analysis is conducted to prevent the risk of falling, whereas, for horizontal surfaces, the margin of stability is evaluated. To determine the required degrees of freedom for the robot to complete its assigned tasks, the screw theory is applied. The De-navit-Hartenberg (D-H) method is then used to analyze the forward and inverse kinematics of the robot. In addition, the La-grange balance method is used to analyze the swing leg's dynamics. A control algorithm for impedance is developed for situations in which the swinging leg collides with the ground. A prototype is then designed and tested to assess the wall-climbing performance and the efficacy of the impedance control strategy when the swinging leg experiences an impact. This research seeks to provide a solid theoretical foundation and technical support for the engineering application of wall-climbing robots, thereby enhancing the efficiency and safety of wall weld and surface microcrack detection processes in ships and oil tanks.