Volume 3 Issue 4
Sep.  2023
Turn off MathJax
Article Contents
Haonan PEI, Wenjing ZHOU, Puyu ZHANG, Ming LUO. A review of point set registration: from fundamental algorithms to geometric quality inspection of aviation complex parts[J]. Journal of Advanced Manufacturing Science and Technology , 2023, 3(4): 2023012. doi: 10.51393/j.jamst.2023012
Citation: Haonan PEI, Wenjing ZHOU, Puyu ZHANG, Ming LUO. A review of point set registration: from fundamental algorithms to geometric quality inspection of aviation complex parts[J]. Journal of Advanced Manufacturing Science and Technology , 2023, 3(4): 2023012. doi: 10.51393/j.jamst.2023012

A review of point set registration: from fundamental algorithms to geometric quality inspection of aviation complex parts

doi: 10.51393/j.jamst.2023012

The work described in this paper was supported by a grant from the eational Science and Technology Major Project of China (Project no. J2019-VII-0014- 0154).

  • Received Date: 2023-05-20
  • Accepted Date: 2023-07-10
  • Rev Recd Date: 2023-06-25
  • Available Online: 2023-08-19
  • Publish Date: 2023-09-05
  • Point set registration (PSR) is a key component of computer vision and pattern recognition tasks, with the goal of assigning correspondence and recovering the transformation that maps one point set to another, to achieve optimal alignment. The geometric quality inspection of aviation complex parts is mainly based on the digitization of the object, and realizes the effective evaluation of geometric quality by analyzing the digital information that characterizes the shape of object, which is of great significance for the high performance and reliability service of aircraft. However, PSR is the mathematical foundation for solving the point cloud alignment problems in the geometric quality inspection of aviation complex parts, the association between the two has not been systematically discussed, which leads to unfavorable research results. Therefore, this paper first gives a mathematical description of PSR. Secondly, the representative fundamental algorithms for PSR are introduced, mainly include: distance-based PSR algorithms, Kernel correlation-based PSR algorithm, mixture model-based PSR algorithms, global-local structure preservation-based PSR algorithms, feature-based PSR algorithms and learning-based PSR algorithms. Besides, the ideas, basic steps, and limitations of these are revealed. Thirdly, the works on point cloud alignment problems in geometric quality inspection of aviation complex parts and the PSR algorithms used are reviewed, i.e. the application of PSR. Finally, the development direction of PSR and the challenges faced in the geometric quality inspection of aviation complex parts are discussed.

  • loading
  • [1]
    . Pomerleau F, Colas F, Siegwart R. A review of point cloud registration algorithms for mobile robotics. FNT in Robotics 2015; 4(1):1-104.
    . Sobreira H, Costa C, Sousa I, et al. Map-matching algorithms for robot self-localization:a comparison between perfect match, iterative closest point and normal distributions transform. J Intell Robot Syst 2019; 93(3-4):533-546.
    . Ryan e, Heneghan C, Chazal P. Registration of digital retinal images using landmark correspondence by expectation maximization. Image Vis Comput 2004; 22(11):883-898.
    . Li W, Dong M, Lu e, et al. Multi-sensor face registration based on global and local structures. Applied Sciences 2019; 9(21):4623.
    . Weng R, Lu J, Tan Y. Robust point set matching for partial face recognition. IEEE Trans on Image Process 2016; 25(3):1163-1176.
    . Sotiras A, Davatzikos C, Paragios e. Deformable medical image registration:A survey. IEEE Trans Med Imaging 2013; 32(7):1153-1190.
    . Cheng Q, Sun P, Yang C, et al. A morphing-based 3D point cloud reconstruction framework for medical image processing. Computer Methods and Programs in Biomedicine 2020; 193:105495.
    . Zhang Z, Min Z, Zhang A, et al. Reliable hybrid mixture model for generalized point set registration. IEEE Trans Instrum Meas 2021; 70:1-10.
    . Liu Y, Du S, Cui W, et al. Precise point set registration based on feature fusion. Comput J 2021; 64(7):1039-1055.
    . Myronenko A, Song X. Point set registration:Coherent point drift. IEEE Trans Pattern Anal Mach Intell 2010; 32(12):2262-2275.
    . Bing J, Vemuri B. Robust point set registration using gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 2011; 33(8):1633-1645.
    . Wang P, Luo M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. J Manuf Syst 2021; 58:16-32.
    . Li W, Li Z, Mao J, et al. The development of onsiteautomatic-optical inspection system with robot for complex parts of nuclear main pump. Journal of Mechanical Engineering 2020; 56(13):179-191.[Chinese]
    . Zhou L, Bu K, Dong Y, et al. Rapid registration technology of turbine blade based on simplified cloud data. Computer Integrated Manufacturing Systems 2012; 18(05):988-992.[Chinese]
    . Li T, Pan Q, Gao L, et al. Differential evolution algorithm-based range image registration for freeform surface parts quality inspection. Swarm Evol Comput 2017; 36:106-123.
    . Wu R, Yu Z, Ding D, et al. OICP:An online fast registration algorithm based on rigid translation applied to wire arc additive manufacturing of mold repair. Materials 2021; 14(6):1563.
    . Mariano I, Li X. Automatic registration of 3D point clouds for reverse engineering. Advanced Science Letters 2011; 4(6):2431-2432.
    . Lamine T, Gokhool T, Checchin P, et al. CICP:Cluster iterative closest point for sparse-dense point cloud registration. Robot Auton Syst 2018; 108:66-86.
    . Gu Y, Zheng H, Xu X, et al. Multi-target positioning and grabbing with industrial robot based on CICP. Computer Engineering and Application 2019; 55(18):189-194.[Chinese]
    . Zhao X, Zhan P, Wu F, et al. Target recognition and registration in 3D dynamic scene based on domain knowledge. Robot 2018; 40(4):534-539.[Chinese]
    . Li Y, Zhang L, Wang Y. An optimal method of posture adjustment in aircraft fuselage joining assembly with engineering constraints. Chinese J Aeronaut 2017; 30(6):2016-2023.
    . Wu D, Du F. A multi-constraints based pose coordination model for large volume components assembly. Chinese J Aeronaut 2020; 33(4):1329-1337.
    . Wu D, Wang H, Peng J, et al. Machining fixture for adaptive CeC machining process of near-netshaped jet engine blade. Chinese J Aeronaut 2020; 33(4):1311-1328.
    . Zhao Z, Xu J, Fu Y, et al. An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation. Chinese J Aeronaut 2018; 31(1):178-186.
    . Wan e, Shen X, Chang Z, et al. A new localization theory of adaptive machining of near-net-shape blades. Chinese J Aeronaut 2021; 34(6):18-32.
    . Tam G, Cheng Z, Lai Y, et al. Registration of 3D point clouds and meshes:a survey from rigid to nonrigid. IEEE Trans Visual Comput Graphics 2013; 19(7):1199-1217.
    . Maiseli B, Gu Y, Gao H. Recent developments and trends in point set registration methods. J Vis Commun Image Represent. 2017; 46:95-106.
    . Zhu H, Guo B, Zou K, et al. A Review of point set registration:from pairwise registration to groupwise registration. Sensors 2019; 19(5):1191.
    . Tan Z, Sun J, Teng S. A novel iterative point matching algorithm based on affine parameter estimation. Computer Science 2007; 10:221-225.[Chinese]
    . Cheng L, Song C, Liu X, et al. Registration of laser scanning point clouds:a review. Sensors 2018, 18(5):1641.
    . Choi A, Chae S, Kim T, et al. A novel patient-toimage surface registration technique for EeT-and neuro-navigation systems:proper point set in patient space. Applied Sciences 2021; 11(12):5464.
    . Besl P, McKay e. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 1992; 14(2):239-256.
    . Zhang Z. Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vision 1994; 13(2):119-152.
    . Gold S, Rangarajan A, Lu C, et al. eew algorithms for 2D and 3D point matching. Pattern Recognition 1998; 31(8):1019-1031.
    . Tsin Y, Kanade T. A correlation-based approach to robust point set registration. In:Pajdla T, Matas J, eds. Computer Vision-ECCV 2004. 2004:558-569.
    . Ma J, Zhao J, Yuille A. eon-rigid point set registration by preserving global and local structures. IEEE Trans on Image Process 2016; 25(1):53-64.
    . Horaud R, Forbes F, Yguel M, et al. Rigid and articulated point registration with expectation conditional maximization. IEEE Trans Pattern Anal Mach Intell 2011; 33(3):587-602.
    . Chetverikov D, Stepanov D, Krsek P. Robust euclidean alignment of 3D point sets:the trimmed iterative closest point algorithm. Image and Vision Computing 2005; 23(3):299-309.
    . Demantké J, Mallet C, David e, et al. Dimensionality based scale selection in 3D lidar point clouds. Int Arch Photogramm Remote Sens Spatial Inf Sci 2012; XXXVIII-5/W12:97-102.
    . Ying S, Wu G, Wang Q, et al. Hierarchical unbiased graph shrinkage (HUGS):A novel groupwise registration for large data set. NeuroImage 2014; 84:626-638.
    . Elseberg J, Magnenat S, Siegwart R, et al. Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. J Software Eng Robot 2012; 3(1):2-12.
    . Zhang X, Glennie C, Kusari A. Change detection from differential airborne lidar using a weighted anisotropic iterative closest point algorithm. IEEE J Sel Top Appl Earth Observations Remote Sensing 2015; 8(7):3338-3346.
    . Wang X, Zhang M, Yu X, et al. Point cloud registration based on improved iterative closest point method. Optics and Precision Engineering 2012; 20(09):2068-2077.[Chinese]
    . Jo J, Moon C. Development of a practical ICP outlier rejection scheme for graph-based SLAM using a laser range finder. Int J Precis Eng Manuf 2019; 20(10):1735-1745.
    . Stewart C, Chia-Ling T, Roysam B. The dualbootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans Med Imaging 2003; 22(11):1379-1394.
    . Dong J, Peng Y, Ying S, et al. LieTrICP:An improvement of trimmed iterative closest point algorithm. Neurocomputing 2014; 140:67-76.
    . Fitzgibbon A. Robust registration of 2D and 3D point sets. Image and Vision Computing 2003;21(13-14):1145-1153.
    . Sharp G, Lee S, Wehe D. ICP registration using invariant features. IEEE Trans Pattern Anal Machine Intell 2002;24(1):90-102.
    . Yang J, Li H, Campbell D, et al. Go-ICP:A globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Anal Mach Intell 2016; 38(11):2241-2254.
    . Yang Y, Fan D, Du S, et al. Point set registration with similarity and affine transformations based on bidirectional KMPE loss. IEEE Trans Cybern 2021; 51(3):1678-1689.
    . Zhang J, Yao Y, Deng B. Fast and robust iterative closest point. IEEE Trans Pattern Anal Mach Intell 2021; 44(7):3450-3466.
    . Walker H., ei P. Anderson Acceleration for fixedpoint iterations. SIAM J Numer Anal 2011; 49(4):1715-1735.
    . Holland P, Welsch R. Robust regression using iteratively reweighted least-squares. Communications in Statistics-Theory and Methods 1977; 6(9):813-827.
    . Amberg B, Romdhani S, Vetter T. Optimal step nonrigid ICP algorithms for surface registration. 2007 IEEE Conference on Computer Vision and Pattern Recognition; 2007. p. 1-8.
    . Kou Q, Yang Y, Du S, et al. A modified non-rigid ICP algorithm for registration of chromosome images. In:Huang De-Shuang, Jo Kang-Hyun, editors. Intelligent Computing Theories and Application; 2016. p. 503-513.
    . Xiong L, Wu L, Cui W, et al. Robust non-rigid registration based on affine ICP algorithm and partbased method. Neural Process Lett 2018; 48(3):1305-1321.
    . He Q, Zhou J, Xu S, et al. Adaptive hierarchical probabilistic model using structured variational inference for point set registration. IEEE Trans Fuzzy Syst 2020; 28(11):2784-2798.
    . Rose K, Gurewitz E, Fox G. Statistical mechanics and phase transitions in clustering. Phys Rev Lett 1990; 65(8):945-948.
    . Chui H, Rangarajan A. A feature registration framework using mixture models. Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis; 2000. p. 190-197.
    . Bookstein F. Principal warps:Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Machine Intell 1989; 11(6):567-585.
    . Li L, Yang M, Wang C, et al. Robust point set registration using signature quadratic form distance. IEEE Trans Cybern 2020; 50(5):2097-2109.
    . Yuille Alan L, Grzywacz eorberto M. A mathematical analysis of the motion coherence theory. Int J Comput Vision 1989; 3(2):155-175.
    . Dempster A, Laird e, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:Series B (Methodological) 1977; 39(1):1-22.
    . Lu M, Zhao J, Guo Y, et al. Accelerated coherent point drift for automatic three-dimensional point cloud registration. IEEE Geosci Remote Sensing Lett 2016; 13(2):162-166.
    . Qu H, Wang J, Li B. Probabilistic model for robust affine and non-rigid point set matching. IEEE Trans Pattern Anal Mach Intell 2017;39(2):371-384.
    . Min Z, Meng M. Robust and accurate nonrigid point set registration algorithm to accommodate anisotropic positional localization error based on coherent point drift. IEEE Trans Automat Sci Eng 2021; 18(4):1939-1955.
    . Hirose O. A bayesian formulation of coherent point drift. IEEE Trans Pattern Anal Mach Intell 2021; 43(7):2269-2286.
    . Zhou Z, Zheng J, Dai Y, et al. Robust non-rigid point set registration using student's-t mixture model. PLoS ONE 2014; 9(3):e91381.
    . Yang L, Tian Z, Wen J, et al. Adaptive non-rigid point set registration based on variational bayesian. Journal of Northwestern Polytechnical University 2018,36(05):942-948.[Chinese]
    . He Q, Lin G, Zhou J, et al. eon-rigid point set registration based on variational bayes hierarchical probability model. Journal of Computers 2021; 44(09):1866-1887.[Chinese]
    . Yang L, Yang Y, Wang C, et al. Rotation robust non-rigid point set registration with Bayesian student's t mixture model. Vis Comput 2023; 39(1):367-379.
    . Zheng Y, Doermann D. Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans Pattern Anal Machine Intell 2006; 28(4):643-649.
    . Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Machine Intell 2002; 24(4):509-522.
    . Ge S, Fan G. Topology-aware non-rigid point set registration via global-local topology preservation. Mach Vis Appl 2019; 30(4):717-735.
    . Roweis S, Saul L. eonlinear dimensionality reduction by locally linear embedding. Science 2000; 290(5500):2323-2326
    . Ma X, Yang Y, Yang K, et al. Registration algorithm based on fuzzy shape context and local vector similarity constraint. Acta Automatica Sinica 2020; 46(2):342-357.[Chinese]
    . Liu C, Kong X, Zhao X. eon-rigid point set registration based on new shape context and local structure constraint. Proceedings of the 2020 9th International Conference on Computing and Pattern Recognition; 2020. p. 439-446.
    . Zou K, Zhu H, De Freitas A, et al. Track-to-track association for intelligent vehicles by preserving local track geometry. Sensors 2020; 20(5):1412.
    . Yang G, Li R, Liu Y, et al. A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis Comput 2022; 38(2):603-623.
    . Chen Q, Feng D, Hu H. A robust non-rigid point set registration algorithm using both local and global constraints. Vis Comput 2023; 39(3):1217-1234.
    . Yang Y, Ong S, Foong K. A robust global and local mixture distance based non-rigid point set registration. Pattern Recognition 2015; 48(1):156-173.
    . Tuytelaars T, Mikolajczyk K. Local invariant feature detectors:a survey. FNT in Computer Graphics and Vision 2007; 3(3):177-280.
    . Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 2005, 27(10):1615-1630.
    . Lowe D. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision 2004; 60(2):91-110.
    . Johnson A, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Machine Intell 1999; 21(5):433-449.
    . Li P, Wang J, Zhao Y, et al. Improved algorithm for point cloud registration based on fast point feature histograms. J Appl Remote Sens 2016; 10(4):045024.
    . Mikolajczyk K, Tuytelaars T, Schmid C, et al. A comparison of affine region detectors. Int J Comput Vision 2005; 65(1-2):43-72.
    . Ma J, Qiu W, Zhao J, et al. Robust L2E estimation of transformation for non-rigid registration. IEEE Trans Signal Process 2015; 63(5):1115-1129.
    . Girosi F, Jones M, Poggio T. Regularization theory and neural networks architectures. Neural Comput 1995; 7:219-269.
    . Chen J, Ma J, Yang C, et al. eon-rigid point set registration via coherent spatial mapping. Signal Processing 2015; 106:62-72.
    . Qi C, Su H, Mo K, et al. Pointeet:Deep Learning on Point Sets for 3D Classification and Segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI; 2017. p. 77-85.
    . Deng H, Birdal T, Ilic S. PPFeet:Global context aware local features for robust 3D point matching. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; Salt Lake City, UT; 2018. p. 195-205.
    . Aoki Y, Goforth H, Srivatsan R, et al. PointeetLK:Robust & efficient point cloud registration using Pointeet. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Long Beach, CA, USA; 2019. p. 7156-7165.
    . Baker S, Matthews I. Lucas-kanade 20 years on:a unifying framework. Int J Comput Vis 2004; 56(3):221-255.
    . Yew Z, Lee G. 3DFeat-eet:Weakly Supervised local 3D features for point cloud registration. In:Ferrari Vittorio, Hebert Martial, Sminchisescu Cristian, Weiss Yair, editors. Computer Vision-ECCV 2018; 2018. p. 630-646.
    . Lawin F, Forssen P. Registration loss learning for deep probabilistic point set registration. 2020 International Conference on 3D Vision (3DV); 2020. p. 563-572.
    . Wang Y, Solomon J. Deep closest point:Learning representations for point cloud registration. 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019. p. 3522-3531.
    . Wang Y, Sun Y, Liu Z, et al. Dynamic graph Cee for learning on point clouds. ACM Trans Graph 2019; 38(5):1-12.
    . Yew Z, Lee G. RPM-eet:Robust point matching using learned features. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020. p. 11821-11830.
    . Wang L, Fang Y. Coherent point drift networks:Unsupervised learning of non-rigid point set registration. arXiv 2019.
    . Xie H, Li W, Liu H. General geometry calibration using arbitrary free-form surface in a vision-based robot system. IEEE Trans Ind Electron 2022; 69(6):5994-6003.
    . Peng W, Wang Y, Miao Z, et al. Viewpoints planning for active 3-D reconstruction of profiled blades using estimated occupancy probabilities (EOP). IEEE Trans Ind Electron 2021; 68(5):4109-4119.
    . Wang G, Li W, Jiang C, et al. Trajectory planning and optimization for robotic machining based on measured point cloud. IEEE Trans Robot 2022; 38(3):1621-1637.
    . Wang J, Gong Z, Tao B, et al. A 3-D reconstruction method for large freeform surfaces based on mobile robotic measurement and global optimization. IEEE Trans Instrum Meas 2022; 71:1-9.
    . Wang C, Liang L, Wang Y, et al. Review of hole boundary recognition in 3D point cloud model. Modern Manufacturing Engineering 2019; 7:157-162.[Chinese]
    . Li W, Xie H, Zhang G, et al. Adaptive bilateral smoothing for a point-sampled blade surface. IEEE/ASME Trans Mechatron 2016; 21(6):2805-2816.
    . Cheng Y, Li W, Jiang C, et al. A novel point cloud simplification method using local conditional information. Meas Sci Technol 2022; 33(12):125203.
    . Mali R, Gupta T, Ramkumar J. A comprehensive review of free-form surface milling-advances over a decade. J Manuf Process 2021; 62:132-167.
    . Cheng Y, Li W, Jiang C, et al. A novel cooling hole inspection method for turbine blade using 3D reconstruction of stereo vision. Meas Sci Technol 2022; 33(1):015018.
    . Pei H, Luo M, Du S. Research on profile geometric feature parameters extraction of complicated thin-walled ring parts with irregular section. Computer-Aided Design and Applications 2023; 20(6):1271-1287.
    . Peng W, Wang Y, Zhang H, et al. Robust multipoint-sets registration for free-form surface based on probability. IEEE Trans Ind Electron 2022; 69(12):9206-9215.
    . Xie L, Zhu Y, Yin M, et al. Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile. Mech Syst Signal Process 2022; 178:109243.
    . Wang Z, Yin M, Dong J, et al. Multi-view point clouds registration method based on overlap-area features and local distance constraints for the optical measurement of blade profiles. IEEE/ASME Trans Mechatron 2022; 27(5):2729-2739.
    . Wu H, Wang Y, Vela P, et al. Geometric inlier selection for robust rigid registration with application to blade surfaces. IEEE Trans Ind Electron 2022; 69(9):9206-9215.
    . Wang Y, Liu Y, Xie Q, et al. Density-invariant registration of multiple scans for aircraft measurement. IEEE Trans Instrum Meas 2021; 70:1-15.
    . Han X, Jin J, Wang M, et al. A review of algorithms for filtering the 3D point cloud. Signal Processing:Image Communication 2017; 103-112.
    . Cheng Y, Zhang D, Bu K, et al. Model registration control point set selection for turbine blade shape inspection. Chinese Journal of Mechanical Engineering 2009; 45(11):240-246.[Chinese]
    . Li Z, Zhang P, Zhong K, et al. Development and application of AutoScan series automated 3D measuring equipment for complex parts. Acta Aeronautica et Astronautica Sinica 2021; 42(10):119-136.[Chinese]
    . Pei H, Zhang P, Du S, et al. A point cloud preprocessing method for complicated thin-walled ring parts with irregular section. Measurement 2023; 214:112807.
    . Xiong Z, Li Q, Mao Q, et al. A 3D laser profiling system for rail surface defect detection. Sensors 2017; 17(8):1791.
    . Li Y, Zhong X, Ma Z, et al. The outlier and integrity detection of rail profile based on profile registration. IEEE Trans Intell Transport Syst 2020; 21(3):1074-1085.
    . Wu C, Liao J, Xiong S, et al. Contour matching method of groove track based on laser sensor. Journal of Zhejiang University (Engineering Science) 2021; 55(9):1607-1614+1624.[Chinese]
    . Lin X, Wu G, Shan X, et al. An improved ICP registration algorithm based on CMM measurement data of blade section line. Journal of Mechanical Engineering 2020; 56(2):1-8.[Chinese]
    . Jing S, Cheng Y, Zhang D, et al. Tolerance zone constrained alignment method for turbine blade model. Computer Integrated Manufacturing Systems 2010; 16(4):883-886.[Chinese]
    . Ding J, Liu Q, Sun P. A robust registration algorithm of point clouds based on adaptive distance function for surface inspection. Meas Sci Technol 2019; 30(7):075003.
    . He W, Li Z, Guo Y, et al. A robust and accurate automated registration method for turbine blade precision metrology. Int J Adv Manuf Technol 2018; 97(9-12):3711-3721.
    . Xie Q, Zhang Y, Cao X, et al. Part-in-whole point cloud registration for aircraft partial scan automated localization. Computer-Aided Design 2021; 137:103042.
    . Xie H, Li W, Yin Z, et al. Variance-minimization iterative matching method for free-form surfaces-part I:theory and method. IEEE Trans Automat Sci Eng 2019; 16(3):1181-91.
    . Xie H, Li W, Yin Z, et al. Variance-minimization iterative matching method for free-form surfaces-part II:experiment and analysis. IEEE Trans Automat Sci Eng 2019; 16(3):1192-204.
    . Ghorbani H, Khameneifar F. Construction of damage-free digital twin of damaged aero-engine blades for repair volume generation in remanufacturing. Robot Comput Integr Manuf 2022; 77:102335.
    . Wang G, Li W, Jiang C, et al. Machining allowance calculation for robotic edge milling an aircraft skin considering the deformation of assembly process. IEEE/ASME Trans Mechatron 2022; 27(5):3350-3361.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (377) PDF downloads(55) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint