Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Shengpeng HU, Yu LEI, Jie SUN, Wei FU, Danyang LIN, Xiaoguo SONG, Jian CAO. Application progress of high-entropy alloys in brazing field: A short review[J]. Journal of Advanced Manufacturing Science and Technology , 2022, 2(2): 2022008. doi: 10.51393/j.jamst.2022008
Citation: Shengpeng HU, Yu LEI, Jie SUN, Wei FU, Danyang LIN, Xiaoguo SONG, Jian CAO. Application progress of high-entropy alloys in brazing field: A short review[J]. Journal of Advanced Manufacturing Science and Technology , 2022, 2(2): 2022008. doi: 10.51393/j.jamst.2022008

Application progress of high-entropy alloys in brazing field: A short review

doi: 10.51393/j.jamst.2022008
Funds:

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51905125, 52175307 and U1737205), the Taishan Scholars Foundation of Shandong Province (No. tsqn201812128) and the Natural Science Foundation of Shandong Province (No. ZR2020QE175).

  • Received Date: 2022-01-15
  • Accepted Date: 2022-03-11
  • Rev Recd Date: 2022-02-20
  • Available Online: 2022-03-17
  • Publish Date: 2022-03-17
  • Multi-component high-entropy alloys (HEAs) have intrigued intensive attentions in the metallic materials fields due to their unprecedented properties including excellent radiation resistance, exceptional strength-ductility synergy at cryogenic temperature and good high-temperature stability. As such, HEAs are promising candidates for many engineering applications in extreme environment. To promote the fabrication and application of HEAs, exploiting HEAs-brazing technique is indispensable due to its cost-effectiveness, simplicity and excellent adaptability to sample configuration. Besides, owing to high-entropy and sluggish diffusion effects, HEAs also can be used as brazing filler metals in the brazing technology. The short review first discusses the brazing of HEAs with different fillers, and the interfacial microstructures and joining properties are summarized. Subsequently, the brazing of traditional ceramics to themselves or to metals with novel HEA filler metals is introduced. Besides, the summary and expectation of the coming research topics are also listed in the conclusions.
  • loading
  • [1]
    . Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes. Advanced Engineering Materials 2004; 6(5):299-303.
    [2]
    . Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science Engineering:A 2004; 375-377:213-218.
    [3]
    . Zhang WR, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. SCIENCE CHINA Materials 2018; 61(1):2-22.
    [4]
    . Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science 2014; 61:1-93.
    [5]
    . Sathiyamoorthi P, Basu J, Kashyap S, et al. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Materials & Design 2017; 134:426-433.
    [6]
    . Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014; 345(6201):1153-1158.
    [7]
    . Shi Y, Yang B, Liaw PK. Corrosion-resistant high-entropy alloys:A review. Metals 2017; 7(2):43.
    [8]
    . Xia SQ, Gao MC, Yang TF, et al. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. Journal of Nuclear Materials 2016; 480:100-108.
    [9]
    . Guo J, Tang C, Rothwell G, et al. Welding of high entropy alloys-A review. Entropy 2019; 21(4):431.
    [10]
    . Lin C, Shiue R-K, Wu S-K, et al. Infrared brazing of CoCrFeMnNi equiatomic high entropy alloy using nickel-based braze alloys. Entropy 2019; 21(3):283.
    [11]
    . Lei Y, Sun J, Hu SP, et al. Investigation on the microstructure and mechanical properties of CoCrFeNi high-entropy alloy joint bonded with BNi2 interlayer. Journal of Materials Processing Technology 2021; 294:117144.
    [12]
    . Li HX, Shen WJ, Chen WJ, et al. Microstructural evolution and mechanical properties of AlCoCrFeNi high-entropy alloy joints brazed using a novel Ni-based filler. Journal of Alloys and Compounds 2021; 860:157926.
    [13]
    . Lin C, Shiue R-K, Wu S-K, et al. Brazing of CoCrFeNi and CoCrFeMnNi equiatomic alloys using 70Au-8Pd-22Ni filler foil. Gold Bulletin 2020; 53(2):101-109.
    [14]
    . Lei Y, Hu SP, Song XG, et al. Transient liquid phase bonding of cast Al0.3CoCrFeNi high-entropy alloy using Ni/Zr/Ni laminated foils. Journal of Alloys and Compounds 2021; 871:159504.
    [15]
    . Lin Y, Xiong JT, Du YJ, et al. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler. Journal of Materials Science & Technology 2021; 61:176-185.
    [16]
    . Li SW, Li JL, Shi JM, et al. Microstructure and mechanical properties of the brazed region in the AlCoCrFeNi high-entropy alloy and FGH98 superalloy joint. Materials Science and Engineering:A 2021; 804:140714.
    [17]
    . Wang G, Sheng GM, Yu QL, et al. Investigation on regulating inter-granular penetration in CoCrMnFeNi high-entropy alloy and 304 stainless steel dissimilar joints. Materials Science and Engineering:A 2021; 800:140291.
    [18]
    . Wang G, Sheng GM, Yu QL, et al. Investigation of intergranular penetration behavior in CrMnFeCoNi HEA/304 SS dissimilar brazing joints. Intermetallics 2020; 126:106940.
    [19]
    . Wang G, Sheng GM, Sun JC, et al. Mechanical properties and microstructure evolution of CrMnFeCoNi HEA/304 SS dissimilar brazing joints. Journal of Alloys and Compounds 2020; 829:154520.
    [20]
    . Wang G, Yang YL, He RJ, et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics. Journal of the European Ceramic Society 2020; 40(9):3391-3398.
    [21]
    . Wang G, Yang YL, Wang M, et al. Brazing ZrB2-SiC ceramics to Nb with a novel CoFeNiCrCu high entropy alloy. Journal of the European Ceramic Society 2021; 41(1):54-61.
    [22]
    . Nora R, Zine TM, Abdelkader K, et al. Boriding and boronitrocarburising effects on hardness,wear and corrosion behavior of AISI 4130 steel. Materia-Brazil 2019; 24(1).
    [23]
    . Yang WQ, He P, Lin TS, et al. Diffusion bonding of ZrB2-SiC and Nb using dynamic compressed Ni foam interlayer. Materials Science and Engineering:A 2013; 573:1-6.
    [24]
    . Zhang LX, Shi JM, Li HW, et al. Interfacial microstructure and mechanical properties of ZrB2SiCC ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy. Materials & Design 2016; 97:230-238.
    [25]
    . Yang YL, Wang G, He RJ, et al. Microstructure and mechanical properties of ZrB2-SiC/Nb joints brazed with CoFeNiCrCuTix high-entropy alloy filler. Journal of the American Ceramic Society 2021; 104(7):2992-3003.
    [26]
    . Tillmann W, Wojarski L, Stangier D, Manka M, Timmer C. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints. Welding in the World 2020; 64(9):1597-1604.
    [27]
    . Gao M, Schneiderman B, Gilbert SM, et al. Microstructural evolution and mechanical properties of nickel-base superalloy brazed joints using a MPCA filler. Metallurgical Materials Transactions A 2019; 50(11):5117-5127.
    [28]
    . Bridges D, Zhang SH, Lang S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Materials Letters 2018; 215:11-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1053) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return