• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Investigation on transient dynamics of rotor system in air turbine starter based on magnetic reduction gear

Investigation on transient dynamics of rotor system in air turbine starter based on magnetic reduction gear

  • 摘要: As an auxiliary mechanical device, Air Turbine Starter (ATS) uses compressed air as power source to start and drive the engine. It withstands the impact of high-pressure airflow during operation, which may cause collision between key components. For this reason, it is necessary to investigate the transient dynamics of ATS rotor system. However, different from the traditional dual rotor structure, ATS uses magnetic reduction gear (MRG) as a reduction unit, which involves multiple physical fields such as magnetic field and stress field, bringing challenges to transient dynamics analysis. In this paper, the magnetic interaction forces between various rotors are innovatively simplified into the form of springs, and added to the solution model to achieve the decoupling of multiple physical fields. On this basis, the transient displacement response of MRG-ATS has been analyzed using transient dynamics theory. The results indicate that the transient displacement of the rotor system has obvious characteristics of oscillation attenuation. The study reveals the feasibility of MRG-ATS application under transient shock.

     

    Abstract: As an auxiliary mechanical device, Air Turbine Starter (ATS) uses compressed air as power source to start and drive the engine. It withstands the impact of high-pressure airflow during operation, which may cause collision between key components. For this reason, it is necessary to investigate the transient dynamics of ATS rotor system. However, different from the traditional dual rotor structure, ATS uses magnetic reduction gear (MRG) as a reduction unit, which involves multiple physical fields such as magnetic field and stress field, bringing challenges to transient dynamics analysis. In this paper, the magnetic interaction forces between various rotors are innovatively simplified into the form of springs, and added to the solution model to achieve the decoupling of multiple physical fields. On this basis, the transient displacement response of MRG-ATS has been analyzed using transient dynamics theory. The results indicate that the transient displacement of the rotor system has obvious characteristics of oscillation attenuation. The study reveals the feasibility of MRG-ATS application under transient shock.

     

/

返回文章
返回