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Abstract 

Monitoring is a crucial aspect of modern production systems, especially in additive manufacturing, where 

instabilities and defects can lead to significant economic losses due to defective components. Consequently, artificial 

intelligence is increasingly used to monitor processes, enabling machines with self-analysis capabilities to generate 

stops or provide automatic feedback to operators. In the Wire Arc Additive Manufacturing (WAAM) process, 

frequency analysis of voltage signals offers an additional method to study signal characteristics, enabling the 

extraction of features that describe the process state. This study conducted deposition tests of Inconel 718 using the 

Pulsed Gas Metal Arc Welding process with pre-optimized parameters. Features were extracted by analysing the 

time-frequency behaviour of welding voltage signals using wavelet decomposition. Subsequently, a Gaussian 

Mixture Model was employed to identify clusters that define the process state. By utilizing the centroids of these 

clusters, the process was monitored online by assigning new samples arriving online from the real deposition 

process to the nearest centroid. This enabled alerts to be generated for an operator or an autonomous 

decision-making module regarding current state of the WAAM system. 
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1. Introduction1 

Additive manufacturing (AM) occupies a crucial 

role in the Industry 4.0 production paradigm1 

enabling the realisation of components with complex 

geometries that conventional methods find 

challenging to replicate. Furthermore, AM expedites 

the prototyping process, thereby decreasing the time 

to market for new products. Its capacity to minimize 

waste by utilizing materials only where required also 

promotes sustainability. Among the AM technologies, 
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Wire Arc Additive Manufacturing (WAAM)2 has 

garnered significant attention from the scientific 

community due to its capability to rapidly construct 

large metal components. WAAM, as depicted in Fig.1, 

represents an AM technique rooted in welding 

principles. In this process, a welding torch is fixed on 

a motion platform and, utilising a welding equipment, 

deposits material layer by layer along a 

predetermined path, defined by a slicer software. This 

method yields near-net-shape components, which 

typically undergo post-processing, such as machining, 

to achieve the final tolerances specified by the project 

requirements. Nevertheless, WAAM is subject to the 

presence of defects such as porosity, instabilities, 

layer collapse, humping and distortion3. Thus, a 
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primary objective in this field is the development of 

monitoring applications capable of real-time defect 

detection4,5 and general self-monitoring to identify the 

process states.  These applications aim to halt the 

production process upon detecting defects to prevent 

the generation of not compliant parts, which translate 

into waste generation and higher production costs. In 

alternative, monitoring application can generate alert 

or feedback to the operator about process stability. 

Nowadays, the possibility to use the torch position 

data coming from the motion platform along the path 

with the output of the anomaly detection systems, 

give the possibility to localise potential defects, 

thereby streamlining and expediting the certification 

procedure6. In fact, the detected anomalies can be 

used as Non Destructive Evaluation (NDE) targets 

during the inspection process, which is potentially 

useful for real-world application, especially for the 

certification process of large complex shape 

components. 

 
Fig. 1. Wire Arc Additive Manufacturing utilizes an electric 

arc to selectively melt a wire feedstock, enabling a 

layer-by-layer deposition to create near-net-shape 

components. A Welding Monitoring System can be 

used to collect data from the process and take action 

based on the data. 

Nowadays, the abundance of resources dedicated to 

the development of AI applications has facilitated the 

widespread integration of AI across various industrial 

applications, including modelling7-9, control10-12, 

optimisation13-16 and monitoring17-20. Particularly in 

monitoring tasks, AI has emerged as a prominent tool, 

with supervised learning approaches predominantly 

favoured due to their demonstrated effectiveness and 

reliability in achieving desired outcomes21,22. These 

approaches leverage labelled datasets to train models, 

enabling them to accurately identify patterns and 

make informed decisions based on past observations. 

As a result, supervised learning methods have become 

instrumental in enhancing monitoring capabilities 

across diverse sectors, offering valuable insights, and 

facilitating proactive decision-making processes. 

Nevertheless, it is widely recognized that developing 

supervised learning applications can be resource 

intensive. Consequently, researchers are increasingly 

exploring semi-supervised or unsupervised learning 

approaches as viable alternatives23-26. 

Semi-supervised learning involves gathering data 

primarily associated with normal behaviour and 

learning the patterns of normality. Deviations from 

what the algorithm has learned can then serve as 

indicators of anomalies. On the other hand, 

unsupervised learning entails clustering data into 

meaningful groups and assigning significance to these 

clusters. Once meaningful interpretations are assigned 

to the clusters, the data can be labelled accordingly, 

and this information can subsequently be utilised to 

develop anomaly detection applications. However, it's 

important to note that these approaches still face 

limitations in the current literature, and further 

research is needed to explore the potential application 

of these techniques in WAAM process. In Fig.2 are 

illustrated the different Machine Learning techniques 

employable in monitoring applications. 

 

Fig. 2. Machine Learning techniques employable in monitoring applications. 
Clustering techniques are fundamental in 

unsupervised learning, playing a pivotal role in 

various applications such as pattern recognition, data 

analysis, and exploration. These methods organise 

data into coherent groups or clusters based on their 

similarities, thereby revealing underlying structures 

within datasets and facilitating insightful 

interpretation and decision-making. In the context of 

AM, clustering finds diverse applications, including 

label generation, identification and rectification of 

incorrect parameters, and, in more sophisticated 

systems, anomaly detection27. In this work a online 

monitoring system based on unsupervised machine 

learning and frequency analysis of welding voltage 

signals is developed to monitor the production 

process of Inconel 718 thin-walled structure through 
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WAAM process. 

2. Materials and Methods 

2.1. Experimental setup and dataset generation 

In the conducted experimental campaign, data were 

collected while depositing thin-walled structure 

through the WAAM process, specifically employing 

Inconel 718 with a wire diameter of 1.2mm and a 

synergic Pulsed-GMAW waveform welding, 

illustrated in Fig.3. For the deposition, a Yaskawa 

MA2010 robotic arm has been programmed and used 

as motion platform, while the Lincoln PowerWave 

500 welding machine is used as welding equipment. 

 

Fig. 3. Experimental setup and waveform welding process 

employed. Traditional Pulse welding consists of a 

peak and background current to deposit a molten 

droplet after each pulse. The waveform, described 

by parameters like Pulse ramp, tailout and 

background current, is developed by a welding 

supplier and allows to deposit of a droplet with a 

fixed frequency depending on wire material and 

diameter. 

In the thin-walled construction, 25 layers of 100 

mm in length have been deposited, maintaining a 

fixed interpass temperature of 30 degrees. The 

parameters utilized included well-established 

parameters such as a wire feed speed of 8.5 m/min, a 

welding speed of 600 mm/min, and a 

contact-to-workpiece distance (CTWD) of 15 mm. 

The synergic line employed for Inconel 718 1.2 mm 

wire has been developed by Lincoln. 

Find the best parameters is complex, since they 

have to avoid issues like excessive spatter or layer 

collapse during the deposition. Unlike Gas Metal Arc 

Welding, where the synergic lines are typically 

chosen based on the thickness of the plate to be 

welded, for WAAM no criteria exist, consequently, 

selecting the parameters relies on experimental 

experience and existing literature which suggest a 

starting point. In this study various parameter 

combinations have been explored, starting with 

experience-based parameters, and the best parameters 

presented above have been utilised to print a wall 

without defects, as shown in Fig.4. 

 
Fig. 4. Wall printed without defects using well-established 

parameters that have been controlled during the 

deposition. 

To induce anomalies within the dataset aiming to 

validate the methodology, another wall was deposited 

with the same parameters, this time without adjusting 

the CTWD before each deposition. This new layer 

contains both defect-free and anomalous layers. The 

introduction of disturbances in the CTWD resulted in 

anomalies such as spatter generation and porosity, 

which simulate real-world scenario due to factors 

such as incorrect path planning, heat accumulation 

and absence of a closed-feedback controller. 

Furthermore, the not controlled interpass temperature 

led into layer collapse, due to a too hot substrate. The 

experimental set up is summarised in Table 1.  
Table 1 Summary of conducted experiments 

Experiment 
Thin-walled structure 

printed without defects 

Thin-walled structure 

printed with anomalies 

Note 

Process parameters have 

been controlled during 

the deposition with 

WFS 8.5 m/min, WS 
600 mm/min and 

CTWD 15 mm at 

Interpass T of 30°. 

Using the same 

parameters of good 

deposition experiments, 

the CTWD and the 
interpass temperature 

have been not controlled 

properly during the 

building process. 

Anomalies Not present 

Excessive spatter 

Arc suppression 

Layer collapse 

During the deposition process, welding voltage 

signals have been acquired using an NI-6001 USB 

device with a high-sample-rate acquisition system 

operating at 5 kHz. To assess the quality of deposited 

layer, expert welders participated to the classification 

procedure via both surface appearance and sound 

coming from the process. In fact, traditionally the 

analysis of acoustic emission has been a crucial 

aspect in the qualification of welds by skilled welding 

operators. Consequently, the contemporary 

examination of acoustic emission during welding 

processes represents a cutting-edge pursuit in defect 

detection systems, often monitored via 

microphones27-30. Nonetheless, the effectiveness of 

these methods can be undermined in noisy 

environments, especially within the audible range of 

20 Hz-20 kHz with the employment of microphones. 

Utilizing a high-frequency system for welding 

electrical signals such as welding voltage, addresses 

this challenge by facilitating signal measurement 
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within a narrower bandwidth, thereby reducing 

environmental noise and enhancing the robustness of 

the detection method in the frequency bands 

correlated to droplet transfer to the melting pool, 

which is related to both layer geometry and process 

stability. Furthermore, a well-established association 

between welding signals and acoustic emission exist, 

as welding signals can indeed be converted into audio 

signals31. Processing these high-frequency signals 

necessitates the extraction of pertinent features before 

applying clustering techniques, which employ 

frequency domain analysis in state-of-the-art 

methods32. Consequently, in this work, a Morlet 

transform is employed to convert the welding voltage 

signals into a scalograms using wavelet analysis, 

which is a visual representation of the energy content 

of a signal across both time and frequency domains. 

Then, the frequency bandwidths of interest have been 

founded and features that describe the frequency 

response in these bandwidths have been extracted via 

wavelet decomposition and used to monitor the 

process. 

2.2. Time-frequency domain features extraction 

The Morlet wavelet, in Eq.(1), is a complex-valued 

wavelet function commonly used in wavelet analysis 

due to its advantageous properties, particularly in 

capturing both frequency and temporal information 

simultaneously33. 

( )
2

01/ 4 / 2π e e
t tt

 − −=                         (1) 

where t represents time, ω0 denotes the 

non-dimensional frequency and i represents the 

imaginary unit. 

The Morlet wavelet is characterized by its 

oscillatory behaviour, resembling a sinusoid wave 

modulated by a Gaussian envelope. This combination 

enables it to effectively capture both high-frequency 

oscillations and transient features within a signal, 

making it particularly suitable for analysing welding 

data in this context. To generate scalograms of 

welding signals, the collected signals have been 

segmented into 1-second-long windows, each 

comprising 5000 samples, for a total of 614 samples 

in the dataset under study. This segmentation is 

crucial for developing an online approach to online 

monitoring welding processes. Then the mean value 

of the time window is removed to remove the 

contribute of the constant components and a Morlet 

transform is applied using 256 wavelets across 

different scales. Fig.5 displays two distinct 

scalograms associated with normal and anomalous 

depositions that highlight how the low-frequency 

content of the signal indicates the presence of 

anomalous conditions. In fact. the scalogram of the 

normal deposition process demonstrates a consistent 

frequency band cantered around 500 Hz, while in the 

high frequency bands a different and higher 

contribution can be founded. This approach utilizing 

scalograms provides a comprehensive view of the 

welding process dynamics, enabling real-time 

anomaly detection and monitoring. By leveraging 

wavelet transform techniques and analysing 

frequency distributions, subtle deviations from 

normal operation can be effectively identified, 

facilitating timely intervention and maintenance. For 

this reason, a python software package has been 

developed using libraries such as NIDAQMX for data 

collection, wavelet34 and Open CV for data 

processing and features extraction and SciKit Learn 

for the clustering analysis. 

 

Fig. 5 Scalograms obtained using the Morlet wavelet transform applied to the time series of welding voltage for (a) normal 

deposition and (b) deposition with anomalies. 
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To develop the monitoring module for the proposed 

WAAM system, in this work is proposed a clustering 

approach that relies on features extracted from 

time-frequency domain analysis. In particular, a 

wavelet decomposition using a 2nd order Daubechies 

wavelet is used to decompose the signal into 2 levels, 

obtaining the frequency content of the signal in the 

bandwidths of 0-625 Hz, 625-1250 Hz and 1250-2500 

Hz. Energy, variance, skewness, kurtosis and the delta 

of the coefficient’s amplitude have been extracted in 

the 0-625 Hz and 625-1250 Hz bandwidths for the 

welding voltage signals, for a total of 10 features for 

samples. 

The extracted features of the training dataset are 

then normalised in the range of 0-1 to assure that all 

the features are in the same interval and that the scale 

of the features do not influence the results of 

clustering. Obtained the minimum and maximum 

values on the training dataset, the features of the test 

dataset are scaled accordingly. 

Then a Principal Component Analysis (PCA) 

has been conducted to reduce the dataset 

dimensionality and visualisation purposes. In 

particular, the PCA has been performed on training 

data, associated with defect-free deposition, and the 

same transformation is then applied to test dataset. 

This because if the features come from the defect-free 

deposition, it is possible to use the same 

transformation to effectively represent the data.  If 

they come from a different process, e.g. an anomalous 

one, the applied transformation emphasises the 

difference between the features, increasing the 

anomaly detection capabilities of the proposed 

unsupervised learning algorithm. In Fig.6 is shown 

the Pareto diagram of the explained variance in 

employing 6 components. The Fig.6 shown that 80% 

of variance is explained using 3 components, while 

90% is explained by using 4 components.  

 
Fig. 6 Pareto diagram of conducted PCA showing that 4 

components explain 90% of the data variance. 

The samples collected during the experimental 

campaign are visualised in Fig.7, which highlight the 

presence of anomalous deposition thar can be 

detected by a machine learning algorithm, once 

meaningful features are extracted and reduced to 4 

components. 

 
Fig. 7 Principal Components that allow to visualise in the 

feature space the features extracted in the 

time-frequency domain. 

2.3. Anomaly detection based on clustering in 

Additive Manufacturing 

In machine learning clustering techniques are used 

to grouping data points into subsets, or clusters, 

where data points within each subset share 

similarities. These similarities can be evaluated based 

different criteria, such as distance metrics, density, or 

distribution patterns in different algorithms like 

KMeans, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) and Gaussian 

Mixture Models. Although clustering is primarily 

used to organise datasets and extracting labels from 

cluster analysis, it may be employed for anomaly 

detection, e.g. to detect instabilities and flaws 

generation in additive manufacturing parts. One 

effective approach in this case is the centroid and 

distance-based method. This method involves 

assigning class labels to data points based on their 

proximity to cluster centroids. Once clusters have 

been identified offline, a label can be assigned to each 

cluster exploring the data in them contained. If one of 

the clusters present anomalous conditions and a new 

sample coming from the process is closer to the 

anomalous cluster, it can be classified as an anomaly. 

The advantage of this methodology is the possibility 

to develop an expert system that, employing machine 

learning, is able to classify anomalies although the 

data available of anomalous conditions are rare and 

not balanced in number with normal data, which 

makes impossible training supervised machine 

learning algorithms. The methodology proposed in 

this work is summarised in Fig.8 and consists in four 

different steps: 

• Cluster Formation: Initially, the dataset 

undergoes clustering and k clusters can be 

identified based data features. 
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• Cluster meaning evaluation: Once the 

clusters have been identified, a label is 

assigned to each cluster following a 

clustered-data exploration in which 

engineering knowledge is used. 

• Centroid Calculation: Once clusters are 

formed and labelled, the centroid of each 

cluster is computed as the mean of all data 

points within the cluster. 

• Anomaly Identification: Once a new data 

come from the WAAM process, the distance 

with respect to identified clusters is 

computed and it is assigned the label of the 

closest centroid. 

 

Fig. 8 Proposed methodology for anomaly detection based on clustering analysis and centroid-distance methods. 

In this work a Gaussian Mixture Model (GMM) 

algorithm is used to cluster the datapoints collected 

during the experimental campaign, thanks to its 

ability to deal with intricate and non-linear data 

structures36. Unlike other techniques like KMeans, 

GMM represents clusters as probability distributions, 

allowing for soft assignments of data points to 

clusters based on the likelihood of belonging to each 

cluster. GMM assumes that data points are generated 

from a mixture of several Gaussian distributions, each 

characterized by its mean, covariance, and weights, 

which are estimated using the 

Expectation-Maximization (EM) algorithm37. The EM 

algorithm iteratively refines the parameter estimates 

until convergence, maximizing the likelihood of the 

observed data given the model. Although GMM 

allows for capturing complex data distributions, 

determining the appropriate number of clusters in a 

GMM remains a challenging task. The Bayesian 

Information Criterion (BIC) offers a principled 

approach to address this challenge by balancing 

model complexity and goodness of fit.  

The BIC method assesses the balance between 

model complexity and fit quality by adjusting the 

likelihood function according to both the model's 

parameter counts and the sample size. By penalising 

models with more parameters, it promotes simpler 

models capable of capturing the underlying data 

structure without overfitting. The ideal number of 

clusters among the 614 samples contained in the 

training dataset, denoted as k, is determined by 

minimizing the BIC score across various k values. 

Furthermore, the evaluation typically caps at 15 

clusters to ascertain the optimal value, which is equal 

to 4 as shown in Fig.9. 

 
Fig. 9 BIC score used to determine the optimal number of 

clusters. 

The proposed anomaly detection process operates 

in two distinct steps. Firstly, the normalised features 

are compared against those obtained from the training 

dataset. Specifically, if the squared sum of the 

obtained features exceeds the maximum values 

observed during training in terms of squared sum, an 

anomaly is flagged. This step is crucial because 

skipping it could lead the algorithm to incorrectly 

assign the sample to a cluster even if it is significantly 

different. This misassignment can occur when new 

and previously unseen anomalies arise, differing from 

those in the test dataset. Secondly, if the sample falls 

within the acceptable range, it is assigned to the 

nearest cluster as proposed in Fig.8. 

3. Results and discussion 

Using the proposed approach, we obtained 4 

clusters, the centroids of which are shown in Fig.10. 

A medoid is defined as the point within a cluster that 

has the minimum average distance to all other points 

in the cluster. Medoids can be used to visually 

represent a characteristic sample of a cluster, as they 
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are actual points within the cluster and minimize the 

sum of distances to all other points in the cluster. In 

the following section the medoids of each cluster 

have been analysed aiming to associate a label to each 

cluster. 

 

Fig. 10 Results obtained using GMM clustering and 

centroids used for the anomaly detection task. 

3.1. Analysis of cluster 0 

The medoid of the cluster 0, which is contained in 

the training dataset, is shown in Fig.11 for both time 

series value and associated spectrogram. The constant 

droplet releasement is characteristic of the synergic 

pulsed for the selected material. In this cluster follow 

the 54% of the samples part of this study, which is 

associated to a normal deposition.  

3.2. Analysis of cluster 1 

The medoid of the cluster 1 is shown in Fig.12, in 

which an anomaly associated to the unexpected arc 

ignition process can be found in a sample contained 

in the test dataset. More specifically, in this case is 

possible to notice a change in transfer mode to 

uncontrolled short circuit and undesired arc ignition 

associated to low quality deposition. In this cluster 

follow only the 2% of samples part of this study. 

 
Fig. 11 Spectrogram and time series welding voltage signal of cluster 0 medoid. 

 
Fig. 12 Spectrogram and time series welding voltage signal of cluster 1 medoid, associated to a deposition under undesired 

condition. 

3.3. Analysis of cluster 2 

The medoid of the cluster 2, contained in the 

training dataset, is shown in Fig.13, in which the 

deposition process is still stable and no undesired 

short circuit can be founded. The slightly difference 

in the frequency content is associated to the building 

process, which due to heat accumulation introduce 

acceptable uncertainties during the deposition. In 

particular, the 33% of the samples of this study follow 

in this cluster that represent normal deposition with 

the cluster 0.  
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Fig. 13 Spectrogram and time series welding voltage signal of cluster 2 medoid. 

3.4. Analysis of cluster 3 

Finally in Fig.14 is shown the medoid of cluster 3, 

contained in the test dataset, in which a process that is 

diverging from the optimal, although a stable 

deposition is observed. In this case few undesired 

short circuits can be detected, which suggest a slight 

unstable deposition, which should alarm the operator. 

The 11% of the samples of this study follow inside 

this cluster. 

 
Fig. 14 Spectrogram and time series welding voltage signal of cluster 3 medoid. 

3.5. Centroid approach to anomaly detection 

Utilising the proposed centroid approach, once the 

clusters have been identified and labelled, the process 

can be monitored online with a sample frequency of 1 

Hz. In particular, the system equipped with the 

proposed software module is able to self-diagnosis 

about its state and can generate alert the operator 

based on the outputs or stop the process if an anomaly 

is detected. The thin-walled structure utilised in this 

work are shown in Fig.15, in which is possible to 

observe the difference in surface appearance of a 

good quality and low-quality deposition. 

Finally, the proposed software module has been 

implemented and tested on the last layer of test wall. 

The results of the proposed clustering method, shown 

in Figure 16, demonstrated the ability of the proposed 

approach to monitor the WAAM process. In particular, 

the arc instability which led into a defect at the 

beginning of the deposition as shown in Fig.16 has 

been correctly individuated (as cluster 1) and the 

operator alerted. Futhermore, undersired short arc (as 

cluster 3) has been individuated and the operator has 

been informed about an instability during the 

deposition process. During the deposition process the 

welding voltage signal is inside the normality bounds, 

so no defect has been detected. 

 
Fig. 15 Thin-walled structures utilised in this work to 

collect and process data to develop the unsupervised 

machine learning methodology used to monitor the 

WAAM process of Inconel 718 parts. 
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Fig. 16 Results of the proposed monitoring methodology based on clustering and unsupervised machine learning in detecting the 

WAAM states during the deposition and in identifying anomalies. 

4. Conclusions 

In this work, an experimental campaign was 

conducted involving the deposition of a thin-walled 

structure in Inconel 718 using WAAM technology. 

The voltage signal was acquired from a defect-free 

process and another in which various instabilities 

were introduced to simulate real-world scenarios. A 

time-frequency study of segmented signals of 

1-second length demonstrated that important 

information regarding the processing state can be 

found in the low-frequency bands between 300-1500 

Hz. A wavelet decomposition was thus utilised to 

extract features in the frequency bands of 0-625 and 

625-1250 Hz, which were then used in a Gaussian 

Mixture Model clustering algorithm, leading to the 

identification of 4 clusters. After visualising the 

medoids of each cluster, a label was assigned to each 

cluster, using surface appearance and welding sounds 

of samples present in each cluster. The proposed 

algorithm enables online process monitoring since 

every second, a new sample is analysed in the 

time-frequency domain and assigned an anomaly 

label or a state label of the process, using the obtained 

clusters as reference. A final application of this 

capability is then showed to remark the performance 

of the proposed methodology. In fact, the potential 

introduced by this methodology can allow intelligent 

production systems to provide online feedback to 

operators regarding the state of the deposition and 

halt the process if an anomaly is present or highlight 

it, along with the tool centre point information of the 

robot, for potential post-processing non-destructive 

tests as support for the certification of the part 

produced via AM technology. 
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