• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

An accuracy control strategy for micro-milling process of folded waveguide slow wave structure

An accuracy control strategy for micro-milling process of folded waveguide slow wave structure

  • 摘要: The slow-wave structure (SWS) working in the terahertz frequency band features large aspect ratio and long span with characteristic dimensions of tens of microns. The development of micro-manufacturing technology for the high-quality fabrication of terahertz SWS is technically essential to promote the advancement of terahertz radiation source devices. In this work, micro-milling approaches were devised to process the 0.34 THz folded waveguide SWS with particle-reinforced metal matrix composite material. The causes of shape error and position error, especially within the arc-shape region, were analyzed in detail, considering the influence from the following error of machine tool and the unfavorable rigidity of milling tools. The optimization of regionalized cutting parameters was achieved, and two productive tool-path-planning schemes were conceived according to the structural features within the processing areas, attempting to minimize the external impact on the shape accuracy of SWS. A practical tool replacement scheme with the orthometric setting slots as a reference for resetting after tool replacement was determined, in order to avoid misalignment at the junction of adjacent units. In consideration of the structural complexity of SWS and the position specificity of burrs, the tool path in the horizontal plane was designed in the way of alternately milling of S-shape slot and straight slot, with cutting parameters adaptable to the depth of the processing subregion, which shows excellent suppression effect of burrs. The proposed micro-milling process strategy offers promises to improve the fabrication quality of high-aspect-ratio SWSs with the minimum structure size of ~50μm.

     

    Abstract: The slow-wave structure (SWS) working in the terahertz frequency band features large aspect ratio and long span with characteristic dimensions of tens of microns. The development of micro-manufacturing technology for the high-quality fabrication of terahertz SWS is technically essential to promote the advancement of terahertz radiation source devices. In this work, micro-milling approaches were devised to process the 0.34 THz folded waveguide SWS with particle-reinforced metal matrix composite material. The causes of shape error and position error, especially within the arc-shape region, were analyzed in detail, considering the influence from the following error of machine tool and the unfavorable rigidity of milling tools. The optimization of regionalized cutting parameters was achieved, and two productive tool-path-planning schemes were conceived according to the structural features within the processing areas, attempting to minimize the external impact on the shape accuracy of SWS. A practical tool replacement scheme with the orthometric setting slots as a reference for resetting after tool replacement was determined, in order to avoid misalignment at the junction of adjacent units. In consideration of the structural complexity of SWS and the position specificity of burrs, the tool path in the horizontal plane was designed in the way of alternately milling of S-shape slot and straight slot, with cutting parameters adaptable to the depth of the processing subregion, which shows excellent suppression effect of burrs. The proposed micro-milling process strategy offers promises to improve the fabrication quality of high-aspect-ratio SWSs with the minimum structure size of ~50μm.

     

/

返回文章
返回